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Bunkyo-ku,Tokyo 113, Japan 
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Abstract. The effects of an inter-impurity interaction are studied by the extended Peierls- 
Hubbard model. The Coulomb interactions in the chain are treated by the Hartree-Fock 
approximation. There are two acceptor-type impurities expressed by long-ranged Coulomb 
potentials with anisotropicdielectricconstants. Stationary positions of the impurities as weU 
asstationarylatticeconfigurationsandelectronic wave functionsarenumericallydetermined 
selfconsistently. Trapping of a bipolaron around impurities is found. The distance between 
impuritiesisoftheorderofthemherencelength. Two mid-gap leveb,which would exist for 
a free bipolaron, move to higherenergiesdue to the strong dopant potential. The Coulomb 
interactions in the chain effectivelyweaken the strengthof the dopant potential. The energy 
levels shift to lower energies with increasing interaction strengths. Dynamical conductivity 
(optical absorption) is calculated. The isolated peak in the lower frequencies is associated 
with thepositionofthe localizedlevelin the energygap. Theconsequencesforexperimental 
observation of the impurity clustering are discussed, 

1. Introduction 

Doping of conjugated polymers, such as polyacetylene films, gives rise to dramatic 
changes in their physical properties. They are measured in thermodynamicexperiments, 
transport, optical measurements, and so on. Some of the mechanisms remain 
unresolved. Therefore, the effect of doping on conjugated polymersis an important and 
quite interesting problem to be investigated. 

In the preceding investigations [l-91, we have assumed a random distribution of 
impurities and investigated the electronic structures of doped conjugated polymers. 
When the impurities are charged impurities (dopants which released or accepted elec- 
trons in order to make a closed shell), we have assumed that the dopant configurations 
are disordered in the polymer chain direction and relied upon models with complete 
disorder. However, even if there is a strong possibility that the models with disorder 
simulate doped systems well, interactions would operate among the dopants in real 
materials. As a fairly large void would be present around dopants, the interactions might 
give rise to a more or less correlated distribution which some experiments indicate [lo]. 
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This wvork, which incorporates the inter-impurity interactions, would be desirable for a 
more complete description of the metal-insulator transition. 

In order to investigate further in this direction, we would require detailed knowledge 
about the effects of the inter-impurity interactions. We would like to know how the 
impurity configurations are changed as a result of the mutual interactions and thus how 
the electronic properties vary. Detailed investigation of this problem has been absent 
so far. 

Quiterecently,CohenandGlick[ll] haveincludedtheHubbardCoulombtermand 
inter-impurity interactions in the Su-Schrieffer-Heeger (SSH) model [12]. The number 
of dopants is two or four, and they are modelled by ring charges. They determined 
stationary configurations of impurities as well as stationary lattice patterns, and have 
found impurity clustering due to the interactions. Furthermore, they have investigated 
the phonon dynamics around the soliton. However, an extensive knowledge of the 
impurity distribution and electronic structures has not yet been reported. Thus, it 
becomes necessary to carry out further investigations. 

The purpose of the present paper is to study how the dopant configurations, lattice 
patterns, and electronic structures change due to the inter-impurity interactions. 

For the chain system, we make use of the extended Peierls-Hubbard model [lo], 
where the on-site and nearest-neighbour Coulomb interaction terms are taken into 
account in the SSH model 1121. The short-ranged Coulomb interactions assume effective 
screening of the Coulomb force among n-electrons. The interaction strength would 
become exponentially weaker if electrons separate further. We assume that the inter- 
actions are limited to electrons only on one site or on nearest-neighbour sites. 

We consider two acceptor-type dopant ions. Each dopant is assumed to be a point 
charge. Mutual interaction between them is the long-range Coulomb force with a 
dielectric constant observed over the whole sample. Due to the large void, which would 
be present amongdopants, the Coulomb potentialwould not becompletelyscreened and 
a long-range component would remain. Therefore. the long-range Coulomb potential is 
assumed for the dopant potential, in contrast to short-range ones between electrons. 

Interactions between the chain and dopants are also long ranged. The assumption 
would be appropriate because of the void. Though there might be some possible forms 
for realistic Coulomb potentials, we consider particularly the one used by Conwell and 
Jeyadev 1131. The same potential has been used in 191. The dielectric constants are 
anisotropic depending on whether the direction of each component is parallel or per- 
pendicular to the chain. The component in the chain direction is larger because 
n-electrons can move only in this direction. The dielectric constants might be locally 
different near the impurities. Thus the forms of the potentials around the impurities are 
different from those in regions far from them. However, we assume the same form as in 
[9]  because the effects of the long-range tails of the impurity potentials are expected to 
be qualitatively independent of the details of the potential models. The Coulomb 
potential of the dopants generates a repulsive potential to the electrons in the chain. 
Then-electron density becomessmaller around dopants and an effective positivecharge 
appears.~Therefore, dopant and chain systems interact strongly. This interaction gives 
rise to trapping of a charged soliton around a dopant. 

Furthermore, various assumptions and approximations are used throughout the 
paper. We assume that the dopants can move freely in a line parallel to the chain. Motion 
of the dopants around the chain is not considered. This assumption might simulate the 
finding that dopant columns and chains would be crystallinely ordered in highly oriented 
polyacetylene [14]. We use the Hartree-Fock approximation (HF) for the Coulomb 
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terms of the chain. This approximation would be valid enough because the coherence 
length is about eight lattice constants and can be regarded as large. We determine 
numerically the stationary dopant distribution and lattice patterns. Dopant positions 
and lattice displacements are used as order parameters as well as the HF variables. 

Numerical results are reported in the following way. 
First, we show the relative separation of dopants as a function of the Coulomb 

strengths of the chain. This depends sensitively on the nearest-neighbour Coulomb 
strength. The magnitude is of the order of the coherence length and increases as the 
strength increases. It depends weakly on the on-site strength. 

Second, a typical configurationof the lattice and the electron density distribution are 
shown. We find a trapped bipolaron around dopants. This is an unstable excitation in 
the impurity-free chain. It is formed by balancing the attractive forces between solitons 
and dopants, and the repulsive forces between solitons and between dopants. 

Next, we show theelectronic level structures. We find that the characteristic structure 
of a bipolaron in the impurity-free system is absent. The positions of two mid-gap levels 
are shifted into the conduction band by the strong dopant potentials. As the Coulomb 
strengths increase, a new level splits off from the conduction band, or the localized level 
in the gap comes closer to the valence band. This is because the Coulomb interactions 
effectively weaken the dopant potential. 

Finally, wecalculate the dynamical conductivity (optical absorption) in order to look 
at how the change would be observed in the frequency dependence. There is a localized 
peak in the lower frequency region than that of the main inter-band transition peak. The 
position of the localized peak moves in association with the variation in electronic 
structure. 

This paper is arranged as follows. In section 2, we present the model and explain the 
numerical method. In section 3, we report stationary configurations of the dopants, 
lattice patterns, and electron density. In section 4, we show the electronic level struc- 
ture and calculate the dynamical conductivity. We summarize and discuss the paper in 
section 5. 

2. Model and numerical method 

We consider the following model 

H Hchain + Hdopani ,  

The first term is the extended Peierls-Hubbard model [lo], 

Hchain = - [to  - IY(un+l - ~ n ) ] ( C ! r + I , s c n , s  f HC) 
n.s 

where to is the hopping integral of the undimerized chain, IY the electron-phonon 
coupling constant, U,, the displacement of the nth (CH)-unit, cn,* the annihilation oper- 
atorofanelectron atthenthsitewithspins(s = t , ), Utheon-siteCoulombrepulsion 
strength, Vthe Coulomb strength between the nearest-neighbour sites, and K the spring 
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constant between the adjacent units. The second term of (2.1) is the contribution from 
the dopant ions modelled by point charges. The form is 

Hdopant = I: e 2 / e ,  Ix, - x j I  + v.c:,,c.., (2.3) 

V" = x e 2 / & / [ ( n a  - x j y  + ( € , / & / ) d z ] l h  

i'J n.r 
and 

(2.4) 

where e is the magnitude of the unit charge, and E,, the dielectric constants per- 
pendicular and parallel to the chain, respectively, x,  the position of the centre of the ith 
dopant (it is a continuous variable), a the lattice constant of the undimerized system, 
and d the distance between the dopant ion and the chain. A possible screening mechanism 
is included in the anisotropic dielectric constants. The component parallel to the chain 
is larger than that perpendicular to it. Therefore, the magnitude of the bare charge is 
used for e. Possible local variations of dielectric constants are not considered. Effects of 
long-range potentials would not change so much, even if they are included. The first 
term of (2.3) is the Coulomb force between the dopants. We assume, for simplicity, that 
the dopants move in a line parallel to the chain. In highly oriented polyacetylene, the 
dopant columns and chains would be crystallinely ordered [14]. Motion of the dopants 
around the chain would be suppressed and motion in the chain direction would be 
dominant. The above assumption takes account of this situation. The second term of 
(2.3) represents the effects of the dopant porentialon electronicsystems. The same form 
has been used in [9]. The notionsof short- and long-range Coulomb potentials have been 
summarized in section 1. 

Using the Hartree-Fock approximation (HF), the Uand Vterms in (2.2) are replaced 
as follows: 

t t t 
cn .  7 cn, 7 .!z. 5 cm, 1 * (CL, 7 cn. b,z. 1 c n ,  b + T cn, 1 1 cn, 1 ) - ( c n ,  T T ) (CL, 5 cn 1 ) 

(2.5) 
and 
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wherep,,, = ( C : , ~ C ~ , ~ )  is the electron density, and T " , ~  = ( C ~ , ~ C ~ + ~ , ~ )  = (c~+,,,c.,,)isthe 
bond order parameter. 

Electronic systems are determined by the eigenvalue relation 

~ ~ . ~ q ~ , ~ ( n )  = -(to - ~ Y . - I  + Vtn-l,E)P)k.S(n - 1) -(to -ay,, + VT,,,)P,&+ 1) 

+ [UP,,-, + ~2 ( P ~ - I , ~ *  + ~ , + l . , ~ ) ~ p ? , , , ( n ) +  vne?x.s(n) (2.8) 
I' 

where y. = U,+, - U. is the bond variable, cX,$ is the Kth eigenvalue with spins, and 
q&) the corresponding eigenfunction that satisfies the periodic boundary condition 
q,,,(n + N) = q.,,,(n). Thelattice systemisdeterminedby theself-consistencycondition 

2LY 
(2.9) 

2LY ' 
Y" = - -2 9 x . r  (n  + 1)9&) + -22' 9 R . . S  ( m  + 1)9..s(m) 

K r.5 KN m X . l  

where the prime indicates the sum over occupied states and the second term in 
(2.9) originates from the condition T,y. = 0 due to the periodic boundary condition: 
u n + N =  

Definitions of pn,s and rn,s are used as self-consistency equations: 

(2.10) 

and 

rn,s = 2' q x . s  (n)v,.,(n + 1). (2.11) 

When the set of wave functions {qR,*(n)} ,  Hartree-Fock order parameters @,,$}, 
(s , ,~ } ,  and dimerization order parameters b,,} are given, the total energy E({x,}) is 
calculated as a function of the dopant positions {x,}. It is given by 

E(bx,}) = 2' &r,s - 2 n P n .  T P n .  L - v? (+)(? P * + l . s s )  + v2 n.r & 
R,I  

+ & K E Y :  + 2 e * / E L  Ix, -x,/. (2.12) 
n J fl 

The numerical method which determines {q= ,$ (n) } ,  

(i) We assume that initial impurity positions {x! ' )}  are given. 
(ii) The sets [q&)}, CO,,$}, {z.,~} and b.} are determined self-consistently by (2.8), 

(2.9), (2.10) and (2.11). The method is the same as in [7-91. 
(iii) The total energy E({xj}) is calculated by (2.12). With the help of the numerical 

sub-routine, the function E({xj})  is minimized and the set {xi} is determined. In the sub- 
routine, when {XJ is changed, the process (ii) is iteratively used to obtain a stationary 
value for E({xi}) .  

(iv) The set {xi], thus determined, may correspond to a local minimum of the energy 
E([xJ) .  We arbitrarily vary the initial set {xy'}, and perform the processes (i)-(iii). 

{r,,$}, {y,,} and {xi} is as 
follows. 
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Finally, we obtain {xi}  that gives the minimum of E((x;} ) ,  by comparing the local minima 
obtained. 

3. Stationary configurations 

In the numerical work, the following values (SSH values) are used for the parameters: 
a = 4.1 eV k’, K = 21 eV A-I, and fo = 2.5 eV. These give the dimensionless 
electron-phonon coupling constant A = 2a’//nKto = 0.20. The short-range Coulomb 
strengths U and V are varied within 0 S U S  2.0 to and 0 S V S 1.0 to. We investigate 
the effectsof inter-impurity interactionsby varying the interaction parameters generally. 
The magnitude of the Peierls gap may not agree with that of rea1 samples. We, however, 
expect that general properties persist in realistic Peierls systems, as far as the Coulomb 
strengths are so weak that the mean-field approximation is applied successfully. The 
large coherence length of magnitude, nearly ten lattice constants, might also indicate 
validity of the mean field approximation for the short-range interactions. For the dopant 
potential,theparametersaree:= 1 4 . 3 e V k 2 . s L  =2.5, .q  = 11.5,a = 1.22A,andd= 
2.4 A. These were used by Conwell and Jeyadev [13]. The magnitudes of the dielectric 
constants are comparable to values observed experimentally over the whole sample. 
The system size is N = 100. As we consider the case with two acceptor ions, the electron 
number is N,, = N - 2 .  

Depending on the initial set { x ~ ’ ) .  two types of solutions are obtained. In the first 
typc, two impurities are clustered as found in [ll]. This solution is obtained from the 
initial value lxy’ - x f ’ l  which is much smaller than Na/2. In the second type, the 
impurities are separated from each other, This type is obtained from I x y )  - x $ ” ]  - 
Na/2. As the total energy of the second type is much larger than that of the first type 
(the difference is a few eV), we mainly report on the first type of solutions. 

In figure 1, the relative impurity separation Ax = IxI - x 2 /  in the stable solutions is 
plotted by open squares as a function of U and V .  I n  figures ](a) and (b), results are 
shown for U = 0 and 1.0 to, respectively. Figures l(c) and (d), results are depicted for 
V = 0 and 0.5 to, respectively. When U is kept constant and V increases, Ax also 
increases.NearacertainV(V= 0.6r0forfigure l(a)and V =  I.Otoforfigurel(b)),Ax 
suddenly increases and a phase transition occurs. When V increases further, the ground 
stateof the systemchanges intoa charge density wavestate and Axdecreases. Hereafter, 
we limit our discussion to the system with the bond-order-wave ground state, because 
the latter are believed to be real systems. If Vis taken as constant and U is vaned, Ax 
does not change so much, as shown in figures l(c) and (d). 

In figure 2, a typical solution is depicted. The parameters are U = 1.0 to and V = 
0.5 to. Overall features do not change for other parameters as far as the ground state 
is in the bond-order-wave state. In figure 2(a), the smoothed bond variable, 
?= 4(-l)”(ya - Y ” + ~ ) ,  is shown. Centres of impurities are denoted by arrows on the 
abscissa. There is a polaron-like distortion around impurities. In figure 2(b), the 
smoothed electron density, p,, 3 + Zp,,, + p n + , , J ,  is depicted. It does not de- 
pend on spin. We suppress the suffix s. The overall distribution is determined by the 
dopant potentialasdiscussedin[9]. itdoesnot dependonspin. Reducedelectrondensity 
is accumulated around the impurities. The total number of the reduction is two. In the 
impurity-free system with U = V = 0, we might obtain two charged solitons which are 
widely separated. In figure 2 ,  they would be pinned by dopants. Thus, lattice distortion 
in figureZ(a)isnot associatedwithapolaron but withabipolaron trappedby thedopants. 
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Figure I. Inter-impurity separation Ax as a function of Coulomb repulsion strengths, (land 
V. The squares are the stable solutions. 

InfigureZ(c), thesmoothedbondorderparameter, 5" = a(-l)"(~,-~. ,  - ZS,,, + T ~ + ~ , ~ ) ,  
is shown. Again, results do not depend on spin and the suffix s is suppressed. Spatial 
variation is similar to that of figure Z(a). 

A trapped bipolaron is formed by competition among attractive forces between 
dopants and solitons and repulsive forces between solitons and also between dopants. 
The attractive force between a dopant and its adjacent soliton is always effective but 
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and V = 0.5 to. Centres of impurities are 
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(a) is the smoothed dimerization ampli- 
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K F ~ - ~ . ,  + ZP.., + P ~ + L , ) / ~  and (4 is the 
smoothed bond order parameter, f m =  
(-l)"(T"-,., - 2G.. + Tn*,.J/4. 

attraction between dopants and non-adjacent solitons is effective only when the distance 
between them is less than the coherence length. Then, the two solitons can be bound 
with therelativedistancelessthan thecoherencelength. On theotherhand, therepulsive 
force between solitons operates when the distance is shorter than the coherence length. 
Repulsion between dopants is stronger also. Two solitons thus cannot approach within 
much less than the coherence length. Consequently, the inter-soliton distance is of the 
order of the coherence length as shown in figure 1, The balance among the attractive 
and repulsive forces results in the formation of a trapped bipolaron state. 

4. Energy level structure and dynamical conductivity 

In figure 3, eigenvalues around the energy gap are plotted as a function of Uand V. The 
broken line indicates the Fermi energy. The position is defined as an average of the 
highest occupied state and the lowest unoccupied state. Eigenvalues below the line are 
those of the occupied states and those above the line are of the unoccupied states. In a 
bipolaron in the impurity-free system, there are two localized energy levels in the gap, 
which are locatedsymmetrically with respect to the gapcentre [ IO]. They are unoccupied 
states. However, very different level structures are seen in figure 3. Two unoccupied 
localized states are shifted upward due to the positive dopant potential and there is a 
wide Peierls gap around the Fermi energy. The similar effect due to the strong dopant 
potential was obtained by Takahashi and Fukutome [15]. 

Next, we look at details of the level structures. In figure 3(a) for U = 0, a level splits 
off from the valence band for small V. As Vincreases, the splitting becomes smaller with 
a widening energy gap. At the transition to the charge density wave state, the splitting 
is suppressed. In figure 3(b) for U = 1.0 Io, a similar effect is observed. Furthermore, 
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Figure 3. Eigenvalues around the energy gap as a function of U and V .  The broken line 
indicates the Fermi energy. 

another level splits down from the conduction band as V increases. In figure 3(c) for 
V = 0, there is a localized level split off upward from the valence band. This level is 
already depicted in figures 3(a) and ( b )  when V = 0. The width of the energy gap is 
almost constant. Figure 3 ( 4  shows the case for V = 0.5 to. As Uincreases, a new level 
splits down from the conduction band. This level has been already found in figure 3(6) 
whenU= 1.0foandV=0.5t,. 
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The following discussion is qualitative. One of the origins of the shift of the localized 
levels might be that (I and V terms effectively give rise to a negative on-site potential 
around the solitons asseen in the third term on the right-hand side of (2.8). The negative 
potential is associated with the charge reduction around the dopants. This term moves 
thelevelsdownwardas Uor Vincreases. Inother words, the thirdtermof (2.8) effectively 
weakens the strength of the dopant potential. The other origin might be that the order 
parameter increases as V increases. This prevents the levels from intruding into the 
conduction band as seen in figures 3(a) and (b) .  

In view of the new electronic structures shown in figure 3, it would be interesting to 
investigate the dynamical properties of the system. Here, we calculate the dynamical 
conductivity (optical absorption). The current operator is defined by 

in = iat, X ( cL~ ,A ,~  - c ! , . ~ ~ + l , ~ ) .  (4.1) 

We use the Kubo formula for the conductivity 

where 

and 

j , ( t )  = e’”j,, e-’H’. 

Inserting (4.3) into (4.2), we get 

(4.3) 

(4.4) 

where 

1 
MK,i,s ~ Z [ V ~ . ~ ( ~ ) V L ~ ( ~  + 1) - V~.,(n)qi,.,(n + 1)1 (4.6) 

and the prime and double-prime indicate the sum over the occupied and unoccupied 
states, respectively. The quantity S is a positive infinitesimal. We replace 6 with a finite 
quantity A in order to remove the finite size effect due to the sparse distribution of { E ~ , ~ } .  
Then we get 

(4.7) 

In figure 4, we show numerical results for the conductivity calculated by (4.7). We 
use A = 4r,/N. The magnitude of A is comparable to that of the mean level spacing of 
entire energy bands. The peak due to transition between valence and conduction bands 
looks continuous by the broadening parameter A. The optical absorption due to the 
presence of the localized level in the gap also broadens into a Lorentzian shape, Figures 
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4(a-d) correspond to the electronic structures depicted in figures 3(a-d), respectively. 
At a lower frequency region than the energy with respect to the inter-band-transition 
peak, a localized peak is found. It is obviously associated with the localized level in the 
energy gap discussed in figure 3.  In figures 4(a) and ( b ) ,  the positions of peaks move in 
the high-frequency direction as V increases. This is because the Peierls gap widens as V 
increases. In figures 4(c) and ( d ) ,  the position of the largest peak does not change so 
much. This is due to the constant energy gap. The small peak of figure 4(c) moves only 
weakly as Uchanges. This is associated with figure 3(c) .  The localized level at the top of 
the valence band shifts slightly. The small peak in figure 4(d) moves to a lower frequency 
as U increases. It is also related to the change of the position of the localized level. 
Actually, in figure 3 ( d ) ,  the localized level below the conduction band intrudes into the 
energy gap. In these ways, the dynamical conductivity reflects the changes in  electronic 
structures. 

5. Summary and discussions 

In this paper, we have discussed how the inter-impurity interactions alter the dopant 
configuration, lattice pattern, and energy level structures. The study has been confined 
to the system with two dopants. We find trapping of a bipolaron around the dopants. 
The distance between two solitons is of the order of the coherence length. This is due to 
the balance between the attractive and repulsive forces among dopants and solitons in 
the chain. Electronic level structures are modified due to the strong dopant potential. 
Two mid-gap levels, which exist in a free bipolaron, are absorbed by the conduction 
band. A similar effect was obtained by Takahashi and Fukutome [15J. We find that 
the Coulomb interactions in the chain effectively weaken the strength of the dopant 
potential. This effect explains well the change of the level structure as a function of the 
Coulomb strength in the chain. A new level is emitted from the conduction band or the 
localized level in the gap comes closer to the valence band when the strength becomes 
large. The frequency dependence of the dynamical conductivity is related to the change 
of level structure. The position of the inter-band-transition peak shows the width of the 
energygap. Theisolatedpeak in thelowerfrequencyrange isassociated with the position 
of the localized level in the energy gap. 

To the best of our knowledge, experimental evidence of impurity clustering and 
existence of a trapped bipolaron has not yet been obtained. The reason might be that 
optical absorption data of doped conjugated polymers are very broad, and they are a 
mixture of absorption peaks originating from many types of solitonic excitations, such 
as, solitons, polarons, and bipolarons. It would be difficult to observe separately peaks 
due to a single solitonic excitation. Experiments with better resolution would be desir- 
able. 

In x-ray experiments, it is now established that chains and dopant columns are 
crystallinely ordered in the direction perpendicular to the chains. But peaks, which 
indicate ordering of dopants in the chain direction, seem to be absent in x-ray data (see, 
for example, figure l (b)  of [14]). When better data are obtained we will be able to 
determine whether impurity clustering occurs or not. 

The number of impurities has been confined to two in this paper. We should inves- 
tigate systems with more impurities. Preliminary calculations ofsystems with from three 
to five impurities show that there are various types of stationary solutions. For the three 
impurities, there are three types. In the first type, the three dopants cluster. In the 
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second, two dopants cluster and the other is isolated. In the third, the three dopants are 
mutually isolated. The total energy increases from the first to the third type. For more 
impurities than three, thereexist many more typesof solutions. For clusteredimpurities, 
the distance between the nearest-neighbour impurities is still of the order of the coher- 
ence length. The balance between the attractive and repulsive forces is also effective in 
systems with many impurities. This strongly implies that the inter-impurity interactions 
are the origin of the correlated distribution of impurities. 

What we have to study in the next stage is how the above findings are related to the 
metal-insulator transition. As we have shown in [8,9], the emergence of a density of 
states at the Fermi energy due to disorders is a powerful mechanism for the metallic 
behaviour. We can explain well the appearance of the Pauli susceptibility, its magnitude, 
and the critical concentration, observed in experiments. On the other hand, the metal- 
insulator transition is also observed in highlyoriented samples [14]. Though theimpurity 
distribution might be quite disordered in the chain direction, some correlation may 
exist between the dopants. Our present model enables us to treat the 'semi-random' 
distribution. A sample average over many metastable solutions with various types 
of stationary impurity configurations should be done. We would be able to obtain 
information on the density of states and clarify how the inter-impurity correlation effect 
the mechanism of the metal-insulator transition reported in previous papers [8 ,9 ] .  

The three-dimensional effect is another interesting problem. We can perform further 
calculations by taking account of geometries about chains and dopant columns, which 
were proposed bythex-rayanalysis[14]. Knowledgeofthe way thestructureofatrapped 
bipolaron changes is of particular interest. 
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